Lesson A3–4

Propagating Plants by Division, Separation, and Layering

Unit A. Horticultural Science

Problem Area 3. Plant Propagation

Lesson 4. Propagating Plants by Division, Separation, and Layering

New Mexico Content Standard:

Pathway Strand: Plant Systems

Standard: I: Apply principles of anatomy and physiology to produce and manage plants in both a domesticated and natural environment.

Benchmark: I-C: Explain and use basic methods for reproducing and propagating plants.

Performance Standard: 1. Determine the role of genetics in plants. 2. Describe the components and functions of plant reproductive parts. 3. Identify and practice methods of asexual/sexual propagation. 4. Describe the principles of plant micro-propagation. 5. Apply principles and practices of biotechnology to plant propagation.

Student Learning Objectives. Instruction in this lesson should result in students achieving the following objectives:

1. Explain the difference between separation and division in plant propagation.
2. Describe layering and identify four common forms of layering.
List of Resources. The following resources may be useful in teaching this lesson:

Recommended Resources. One of the following resources should be selected to accompany the lesson:

Other Resources. The following resources will be useful to students and teachers:

List of Equipment, Tools, Supplies, and Facilities

Writing surface
Overhead projector
Transparencies from attached masters

Terms. The following terms are presented in this lesson (shown in bold italics):

Air layering
Bulbs
Bulblets
Corms
Division
Mound layering
Plant crown
Rhizomes
Separation
Simple layering
Trench layering
Tubers
Interest Approach. Use an interest approach that will prepare the students for the lesson. Teachers often develop approaches for their unique class and student situations. A possible approach is included here.

Bring to class a variety of bulbs, corms, tubers, and rhizomes (lily, tulip, crocus, iris, Irish potato, dahlia etc.). Encourage students to discuss what plant grows from each plant structure. What is the advantage of using these structures for plant propagation?

Summary of Content and Teaching Strategies

Objective 1: Explain the difference between separation and division in plant propagation.

Anticipated Problem: What is the difference between separation and division in plant propagation and what plants are propagated using these methods?

1. Some plants produce vegetative plant structures that can be removed intact from the parent plant as a natural means of reproducing. These vegetative plant structures, bulbs, corms, rhizomes, and tubers serve as food storage areas for the plant. In addition, they are structures for vegetative reproduction. **Separation** is the propagation method in which these natural structures are simply removed from the parent plant and planted to grow on their own. When one of these structures is cut into sections that will then grow into a new plant the method is referred to as **division**.

 A. **Bulbs** are shortened underground stems that are enclosed with fleshy leaves. After several growing seasons, bulbs of daffodils, tulips, and lilies split into two or more bulbs. These can be easily separated and each will grow into a new plant. In addition to splitting, bulbs also produce offset bulbs known as **bulblets**. The numerous bulblets grow around the large bulb and can be carefully separated from the parent bulb to be planted to grow on their own.

 B. **Corms** are globe-shaped, fleshy underground stems. They are shorter and broader than a bulb. Corms increase in size during a growing season and may be cut into two or more pieces which are each capable of growing into a new plant. Small corms (cormels) often form around the corm. These small corms may be separated and planted to produce plants. Gladiolus and crocus are examples of plants that produce cormels.

 C. Rhizomes and tubers are underground structures that can be lifted from the soil, then cut or divided into pieces that will produce a new plant. **Rhizomes** are underground stems that grow horizontally just below the soil surface. Iris and lily-of-the-valley may be propagated by dividing their rhizomes into sections. Each section must have an ‘eye’ or node that will produce roots for the new plant. **Tubers** are underground stems similar to rhizomes, except that the ‘eye’ or node produces new shoots instead of roots. Irish potato, dahlia and gloxinia are plants that produce tubers which may be used to propagate new plants.
D. The plant crown is the part of the plant at the soil surface from which new shoots or leaves are produced. Many herbaceous perennials and houseplants are lifted from the soil and the crown divided into sections which become new plants. The African violet is an example of a plant propagated by division of the plant crown.

Use TM: A3–4A to discuss the unique vegetative structures of plants (bulbs, corms, tubers and rhizomes) that may be used to propagate certain plants. Show students as many examples as you can find. Use TM: A3–4B to illustrate separation of bulbs and corms. Have students dig bulbs if possible. Separate bulbs and replant. Use TM: A3–4C to illustrate the separation of the crown of a plant. Bring to class lilies or other perennials that form a clump or crown plant. Separate the crown and replant the individual new plants.

Objective 2: Describe layering and identify four common forms of layering.

Anticipated Problem: What is layering and how is it used to propagate plants?

II. Layering is a simple method of asexual propagation in which roots are formed on a stem while it is still attached to the parent plant. The parent plant supports the new plant during root development until the new plant can function on its own.

A. **Simple layering** is accomplished by bending a branch to the ground, slightly cutting or wounding the stem (branch), and covering the wounded portion with 2 to 3 inches of soil. The wounded area will form a callus and then produce new roots. After new roots have formed, the plants are removed from the parent plant. Honeysuckle and spirea are examples of shrubs that can be propagated using this method.

B. **Trench layering** involves a shallow trench that is dug near the parent plant. An entire branch is bent over, placed in the trench, and then covered with 2 to 5 inches of soil. After a few weeks, roots will develop along the stem and new shoots will form at each node. When the new plants reach the desirable size, they are separated from the parent plant. This method often produces many new plants and is used for fruit (apple and pear) and nut trees that do not easily propagate from cuttings.

C. Ornamental shrubs, roses and gooseberries are examples of plants frequently propagated by mound layering. To perform mound layering, the grower severely prunes the parent plant to a 2 to 4 inch stump that is then covered with soil. The mounded shrub is left undisturbed until the following spring when roots will have developed at the base of each stem. The newly rooted plants can then be separated from the parent plant.

D. **Air layering** involves removing a portion of the bark on a stem. Root inducing hormone is applied to the cut area and moist sphagnum moss placed over the exposed area. Then plastic is wrapped and tied around the moss. After roots develop, the top part of the plant is cut just below the rooted area. The new plant is then potted to grow on its own. Many houseplants can be propagated by air layering.

Use TM: A3–4D to discuss the various methods of layering that are used to propagate plants. Bring into the classroom potted young spirea or raspberry plants to use in demonstrating simple layering. Use TM: A3–4E to demonstrate the technique for air layering. Use houseplants such as the India rubber
plant, Dracaena or Dieffenbachia for a student activity to propagate new plants using the method of air layering.

Review/Summary. Use the student learning objectives to summarize the lesson. Ask the students to explain the response to the anticipated problem of each objective. Student responses can be used to determine which objectives need further review.

Application. Application may involve the following student activity. Students may propagate a variety of plants using separation, division and layering.

Evaluation. Evaluation should focus on student achievement of the objectives of this lesson. Various techniques can be used, such as student performance on the application activity. The self-check section at the end of each chapter in the suggested references will be helpful. A sample written test is attached.

Answers to Sample Test:

Part One: Matching
1. b 2. a 3. e 4. i 5. h 6. g 7. d 8. j 9. c 10. f

Part Two: Completion
1. separation and division
2. the roots on the new plant are well established.
3. node
4. fruit and nut trees

Part Three: Short Answer
In simple layering, a branch is bent to the ground and covered with soil. In air layering, the bark is removed from the stem, a root inducing substance is applied, sphagnum moss is placed over the exposed area, and the area is protected with plastic.
Part One: Matching

Instructions. Match the term with the correct response. Write the letter of the term by the definition.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. bulbs</td>
<td>1. Cutting a vegetative plant structure into sections to produce new plants.</td>
</tr>
<tr>
<td>b. division</td>
<td>2. Short underground stem covered with fleshy leaves.</td>
</tr>
<tr>
<td>c. separation</td>
<td>3. Removing a portion of the bark and inducing new roots to develop in order to propagate a new plant.</td>
</tr>
<tr>
<td>d. mound layering</td>
<td>4. An underground stem that grows horizontally and produces roots at nodes to form new plants.</td>
</tr>
<tr>
<td>e. air layering</td>
<td>5. A globe shaped, fleshy underground stem.</td>
</tr>
<tr>
<td>f. plant crown</td>
<td>6. An underground stem that produces shoots from nodes along the stem.</td>
</tr>
<tr>
<td>g. tuber</td>
<td>7. Propagation of new plants by pruning the parent plant to a short stump that is then covered with soil.</td>
</tr>
<tr>
<td>h. corms</td>
<td>8. Placing a branch of the parent plant in a shallow trench dug near the plant.</td>
</tr>
<tr>
<td>i. rhizome</td>
<td>9. Propagation method in which natural structures are removed from the parent plant and planted to grow on their own.</td>
</tr>
<tr>
<td>j. trench layering</td>
<td>10. The part of the plant at the soil surface from which new shoots or leaves are produced.</td>
</tr>
</tbody>
</table>
Part Two: Completion

Instructions. Provide the word or words to complete the following statements.

1. Bulb producing plants are commonly propagated by_______________ and ________________.
2. Plants produced by air layering are removed from the parent plant when ________________________________.
3. When dividing tubers or rhizomes it is important that each section contain an ‘eye’ or ________________________________.
4. Examples of plants propagated by trench layering are _________________< and _________________ trees.

Part Three: Short Answer

Instructions. Provide information to answer the following question.

1. Contrast simple layering and air layering.
TYPES OF FLESHY-ROOTED PLANTS

Bulbs
Amaryllis
Glory of the snow (Chionodoxa)
Grape hyacinth (Muscari)
Hyacinth
Iris (bulbous)
Lily (Lilium)
Scilla
Snowdrop
Trout lily
Tuberose
Tulip

Tubers and Tuberous Roots and Stems
Anemone
Begonia (tuberous)
Black callus
Bleeding Heart
Caladium
Cyclamen
Dahlia
Desert candle
Gloxinia

Corms
Crocus
Colchicum
Freesia
Gladiolus
Tritoma

Rhizomes
Bird of paradise
Canna
Calla lily
Iris
Lily-of-the-valley
Mint
Rhubarb
SEPARATION OF BULBS AND CORMS

Bulbs

Corms

(Courtesy, Interstate Publishers, Inc.)
Some plants can be propagated by simple division of the plant crown.

The crown of the plant is divided into sections.

Each section is complete with new shoots and roots. These sections are planted to grow into new plants.
METHODS OF LAYERAGE

- Tip Layerage
- Simple Layerage
- Trench Layerage
- Serpentine Layerage
- Mound Layerage
- Air Layerage
AIR LAYERING

Remove a portion of bark on stem

Place moist, unmilled sphagnum moss over the exposed area

Plastic is wrapped and tied around the moss

New plant

(Courtesy, Interstate Publishers, Inc.)